Média, Mediana e Moda - Resolução de Questões do ENEM!
Noções sobre Média, Mediana e Moda
Atendendo
muitas solicitações de nossos leitores sobre esse tema da Estatística e
que também estão se preparando para a importante prova do Enem,
apresentamos um estudo complementar da Estatística aqui já retratado.
Se você quiser mais detalhes sobre o tema, não deixe de acessar a
matéria neste blog: Noções de Estatística. Ainda, informamos que o exame ENEM quase sempre traz questões sobre esse conteúdo. Então, vamos relembrar estes conceitos:
muitas solicitações de nossos leitores sobre esse tema da Estatística e
que também estão se preparando para a importante prova do Enem,
apresentamos um estudo complementar da Estatística aqui já retratado.
Se você quiser mais detalhes sobre o tema, não deixe de acessar a
matéria neste blog: Noções de Estatística. Ainda, informamos que o exame ENEM quase sempre traz questões sobre esse conteúdo. Então, vamos relembrar estes conceitos:
Média:
Quando aparecer apenas o termo “média”, estamos falando simplesmente da média aritmética.
Ela é calculada a partir do somatório dos valores de todos os
elementos, e cujo total é dividido pela quantidade destes elementos
somados. Uma variação dela é chamada de média aritmética ponderada.
Na utilização da média simples, a ocorrência dos valores possui a mesma
importância e no caso da média ponderada são atribuídos aos valores
importâncias ou pesos diferentes.
Quando aparecer apenas o termo “média”, estamos falando simplesmente da média aritmética.
Ela é calculada a partir do somatório dos valores de todos os
elementos, e cujo total é dividido pela quantidade destes elementos
somados. Uma variação dela é chamada de média aritmética ponderada.
Na utilização da média simples, a ocorrência dos valores possui a mesma
importância e no caso da média ponderada são atribuídos aos valores
importâncias ou pesos diferentes.
Na
média simples os valores são somados e divididos pela quantidade de
termos adicionados. A média ponderada é calculada através do somatório
das multiplicações entre valores e dos pesos divididos pelo somatório
dos pesos.
média simples os valores são somados e divididos pela quantidade de
termos adicionados. A média ponderada é calculada através do somatório
das multiplicações entre valores e dos pesos divididos pelo somatório
dos pesos.
Exemplos:
1) Seja o conjunto dos elementos: 2, 4 e 6.
Para achar a média aritmética basta somar os termos e dividir por 3 pois temos 3 termos. Então, a média aritmética simples vale: (2+4+6)/3 = 12/3 = 4.
2)
Se considerarmos que os valores acima ou 2, 4 e 6 são as notas obtidas
por um aluno e cujo peso das provas são respectivamente 1, 2 e 3, então
teremos que a média aritmética ponderada vale: (2.1 + 4.2 + 6.3)/ 1+2+3 = (2+8+18)/ 6 = 28/6 = 4,66...
Se considerarmos que os valores acima ou 2, 4 e 6 são as notas obtidas
por um aluno e cujo peso das provas são respectivamente 1, 2 e 3, então
teremos que a média aritmética ponderada vale: (2.1 + 4.2 + 6.3)/ 1+2+3 = (2+8+18)/ 6 = 28/6 = 4,66...
Mediana:
Dada
uma sequência de valores ordenados em ordem crescente ou decrescente, a
mediana é o valor central dessa sequência. Caso haja dois valores
centrais, a mediana é dada pela média aritmética deles.
Dada
uma sequência de valores ordenados em ordem crescente ou decrescente, a
mediana é o valor central dessa sequência. Caso haja dois valores
centrais, a mediana é dada pela média aritmética deles.
Exemplo:
3) Seja o conjunto de valores: 1, 2, 3, 4, 5, 3, 2, 7.
Colocando estes valores em ordem crescente: 1, 2, 2, 3, 3, 4, 5, 7. Portanto a mediana vale: (3+3)/2 = 6/2 = 3
4) Se o preço de um sapato vale em 5 lojas os valores: 120,00 – 100,00 – 150,00 – 90,00 e 80,00. Qual a Mediana de seus preços?
Colocando-se os valores em ordem crescente: 80,00 – 90,00 – 100,00 – 120,00 – 150,00. Note que o valor 100,00 situa-se exatamente no centro do conjunto, logo ele (100,00) é a Mediana dos preços.
Moda:
Quando
afirmamos que uma roupa está na moda é porque muitas pessoas estão
usando essa mesma roupa. Na Estatística, também é desta forma. Dado um
conjunto de valores, a moda é o número que mais se repete no conjunto.
Quando
afirmamos que uma roupa está na moda é porque muitas pessoas estão
usando essa mesma roupa. Na Estatística, também é desta forma. Dado um
conjunto de valores, a moda é o número que mais se repete no conjunto.
Exemplo:
5) Dado o conjunto de números: 1, 2, 2, 3, 7, 8, 8, 7, 1, 2, 10. Notemos que o número que mais se repete é o 2, logo a moda vale 2.
Nota:
Quando ocorrer de ter mais de um termo com repetições iguais, eles
serão considerados as Modas do conjunto. No entanto, se não ocorrer
repetições não teremos moda no conjunto.
Quando ocorrer de ter mais de um termo com repetições iguais, eles
serão considerados as Modas do conjunto. No entanto, se não ocorrer
repetições não teremos moda no conjunto.
Exemplo:
6)
Considere que minhas notas na escola são: 10, 9, 9, 8, 8, 7, 7 e 5.
Então neste caso a moda das minhas notas vale: 7, 8 e 9, pois cada uma
se repete duas vezes.
Considere que minhas notas na escola são: 10, 9, 9, 8, 8, 7, 7 e 5.
Então neste caso a moda das minhas notas vale: 7, 8 e 9, pois cada uma
se repete duas vezes.
Questões Cobradas nos Exames Enem Anteriores:
1)
O quadro seguinte mostra o desempenho de um time de futebol no último
campeonato. A coluna da esquerda mostra o número de gols marcados e a
coluna da direita informa em quantos jogos o time marcou aquele número
de gols.
O quadro seguinte mostra o desempenho de um time de futebol no último
campeonato. A coluna da esquerda mostra o número de gols marcados e a
coluna da direita informa em quantos jogos o time marcou aquele número
de gols.
Gols marcados | Quantidade de partidas |
0 | 5 |
1 | 3 |
2 | 4 |
3 | 3 |
4 | 2 |
5 | 2 |
7 | 1 |
Se X, Y e Z são, respectivamente, a média, a mediana e a moda dessa distribuição, então:
a) X = Y < Z.
b) Z < X = Y.
c) Y < Z < X.
d) Z < X < Y.
e) Z < Y < X.
b) Z < X = Y.
c) Y < Z < X.
d) Z < X < Y.
e) Z < Y < X.
Solução: Primeiro, calculemos a média (X).
Nesse caso, utilizaremos a média ponderada, que nada mais é do que uma
especificação da média aritmética. Se ocorreu cinco partidas com nenhum
gol, deveríamos somar 0 + 0 + 0 + 0 + 0; três partidas com um gol: 1 + 1 + 1 e assim por diante. Através do cálculo da média ponderada, teremos:
Nesse caso, utilizaremos a média ponderada, que nada mais é do que uma
especificação da média aritmética. Se ocorreu cinco partidas com nenhum
gol, deveríamos somar 0 + 0 + 0 + 0 + 0; três partidas com um gol: 1 + 1 + 1 e assim por diante. Através do cálculo da média ponderada, teremos:
X = 0.5 + 1.3 + 2.4 + 3.3 + 4.2 + 5.2 + 7.1
5 + 3 + 4 + 3 + 2 + 2 + 1
5 + 3 + 4 + 3 + 2 + 2 + 1
X = 0 + 3 + 8 + 9 + 8 + 10 + 7
20
X = 45
20
20
X = 2,25
Depois, vamos calcular a mediana (Y). Para isso, basta organizar os gols marcados em ordem crescente:
0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 7
Ao
organizarmos os gols marcados em ordem crescente, como há dois valores
centrais. Vamos então fazer o cálculo da média aritmética entre eles:
organizarmos os gols marcados em ordem crescente, como há dois valores
centrais. Vamos então fazer o cálculo da média aritmética entre eles:
Y = 2 + 2
2
Y = 2
2
Y = 2
Resta-nos agora encontrarmos a moda (Z).
Para isso, basta olhar na tabela e verificar qual é a maior quantidade
de partidas com o mesmo número de gols marcados. Facilmente podemos
constatar que houve cinco partidas sem nenhum gol marcado. Ao olharmos a
sequência montada para verificar a mediana, também podemos ver que o
número zero é o que mais se repete. Portanto, a moda é zero.
Se Z = 0, Y = 2 e X = 2,25, então a alternativa correta é a letra e, que apresenta Z < Y < X.
Para isso, basta olhar na tabela e verificar qual é a maior quantidade
de partidas com o mesmo número de gols marcados. Facilmente podemos
constatar que houve cinco partidas sem nenhum gol marcado. Ao olharmos a
sequência montada para verificar a mediana, também podemos ver que o
número zero é o que mais se repete. Portanto, a moda é zero.
Se Z = 0, Y = 2 e X = 2,25, então a alternativa correta é a letra e, que apresenta Z < Y < X.
2)
Uma equipe de especialistas do centro meteorológico de uma cidade mediu
a temperatura do ambiente, sempre no mesmo horário, durante 15 dias
intercalados, a partir do primeiro dia de um mês. Esse tipo de
procedimento é frequente, uma vez que os dados coletados servem de
referência para estudos e verificação de tendências climáticas ao longo
dos meses e anos. As medições ocorridas nesse período estão indicadas no
quadro.
Uma equipe de especialistas do centro meteorológico de uma cidade mediu
a temperatura do ambiente, sempre no mesmo horário, durante 15 dias
intercalados, a partir do primeiro dia de um mês. Esse tipo de
procedimento é frequente, uma vez que os dados coletados servem de
referência para estudos e verificação de tendências climáticas ao longo
dos meses e anos. As medições ocorridas nesse período estão indicadas no
quadro.
Dia do mês | Temperatura (em ºC) |
1 | 15,5 |
3 | 14 |
5 | 13,5 |
7 | 18 |
9 | 19,5 |
11 | 20 |
13 | 13,5 |
15 | 13,5 |
17 | 18 |
19 | 20 |
21 | 18,5 |
23 | 13,5 |
25 | 21,5 |
27 | 20 |
29 | 16 |
Em relação à temperatura, os valores da média, mediana e moda são, respectivamente, iguais a
a) 17 °C, 17 °C e 13,5 °C.
b) 17 °C, 18 °C e 13,5 °C.
c) 17 °C, 13,5 °C e 18 °C.
d) 17 °C, 18 °C e 21,5 °C.
e) 17 °C, 13,5 °C e 21,5 °C
b) 17 °C, 18 °C e 13,5 °C.
c) 17 °C, 13,5 °C e 18 °C.
d) 17 °C, 18 °C e 21,5 °C.
e) 17 °C, 13,5 °C e 21,5 °C
Solução:
- Para achar a média aritmética vamos somando todos os valores de temperatura encontrados e dividindo a soma pela quantidade de dias analisados:
M.A. = 15,5+14+13,5+18+19,5+20+13,5+13,5+18+20+18,5+13,5+21,5+20+16
15
15
M.A. = 255
15
15
M.A. = 17
Portanto: A média das temperaturas é de 17° C.
- Para calcular a mediana, vamos organizar os valores em ordem crescente:
13,5; 13,5; 13,5; 13,5; 14; 15,5; 16; 18; 18; 18,5; 19,5; 20; 20; 21,5; 20
O valor central é o 18, então, sem que seja necessário fazer qualquer outro cálculo, podemos afirmar que a mediana é 18°C.
- A moda é
o valor mais frequente entre as informações apontadas. A temperatura de
13,5°C aparece quatro vezes na tabela, sendo a mais frequente.
Portanto, a moda é 13,5°C.
o valor mais frequente entre as informações apontadas. A temperatura de
13,5°C aparece quatro vezes na tabela, sendo a mais frequente.
Portanto, a moda é 13,5°C.
Sendo assim, a alternativa correta é a letra b, que aponta que a média, a mediana e a moda são, respectivamente, 17°C, 18°C e 13,5°C.
3) A
tabela a seguir mostra a evolução da receita bruta anual nos três
últimos anos de cinco microempresas (ME) que se encontram à venda.
tabela a seguir mostra a evolução da receita bruta anual nos três
últimos anos de cinco microempresas (ME) que se encontram à venda.
Um investidor deseja
comprar duas destas empresas listadas na tabela. Para tal, ele calcula a
média da receita bruta anual dos últimos três anos (de 2009 até 2011) e
escolhe as duas empresas com a maior média anual. As empresas que este
investidor deverá escolher para comprar são
comprar duas destas empresas listadas na tabela. Para tal, ele calcula a
média da receita bruta anual dos últimos três anos (de 2009 até 2011) e
escolhe as duas empresas com a maior média anual. As empresas que este
investidor deverá escolher para comprar são
A) Balas W e Pizzaria Y.
B) Chocolates X e Tecelagem Z.
C) Pizzaria Y e Alfi netes V.
D) Pizzaria Y e Chocolates X.
E) Tecelagem Z e Alfinetes V.
Solução: Com base na tabela acima, calcula-se as médias de cada empresa:Empresa Alfinetes V = 200+220+240 / 3 = 660/3 = 220
Empresa Balas W = 200+230+200 / 3 = 630/3 = 210
Empresa Chocolates X = 250+210+215 / 3 = 675/3 = 225
Empresa Pizzaria Y = 230+230+230 /3 = 690/3 = 230
Empresa Tecelagem Z = 160+210+245 / 3 = 615/3 = 205
Logo, ele escolheu a letra D): Pizzaria Y (230) e Chocolates X (225)
4) O gráfico apresenta o
comportamento de emprego formal surgido, segundo o CAGED, no período de
janeiro de 2010 a outubro de 2010.
Com base no gráfico, o valor da parte inteira da mediana dos empregos formais surgidos no período é
A) 212.952.
B) 229.913.
C) 240.621.
D) 255.496.
E) 298.041
comportamento de emprego formal surgido, segundo o CAGED, no período de
janeiro de 2010 a outubro de 2010.
Com base no gráfico, o valor da parte inteira da mediana dos empregos formais surgidos no período é
A) 212.952.
B) 229.913.
C) 240.621.
D) 255.496.
E) 298.041
Solução: Pede-se para calcular a mediana, logo:
Coloquemos os dados em ordem crescente(rol), temos:
181419 - 181796 - 204804 - 209425 - 212952 - 246875 - 266415 - 298041 - 299415 - 305068
Como sobrou os valores centrais, vamos
calcular sua média aritmética simples ou seja: 212952+246875 /2 =
459827/2 = 229913, portanto devemos marcar a letra B.
calcular sua média aritmética simples ou seja: 212952+246875 /2 =
459827/2 = 229913, portanto devemos marcar a letra B.
Atenção - Se você quer mais questões e outras dicas sobre a prova do exame ENEM acesse nosso post: Matemática Cobrada no ENEM!
A Matemática Aqui é Simples e Descomplicada! |